团队介绍
环境污染治理与资源化研究团队面向国家生态环境可持续发展的战略需求,开展环境污染生物治理与资源转化相关技术理论的研究与应用。研究团队现有教授5人,副教授3人,讲师及师资博士后6人。承担国家自然科学基金重点项目、优秀青年基金、面上项目、省重点研发项目等70余项国家级省级科研项目。近五年发表SCI论文百余篇,获授权专利十余项。主要研究方向:(1)群体感应调控污水生物处理与资源化新机制;(2)功能菌株强化污染物削减机制与资源化方法;(3)功能材料强化污水生物处理与资源化新技术;(4)严寒地区水污染低碳治理技术与工艺
现承担的国家级省级科研项目18项,包括:国家自然科学基金重点项目“城市污水生物处理过程的群体感应调控原理”、国家自然科学基金面上项目“强化活性污泥类固醇雌激素降解效能及机制研究、兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控、蓝藻水华形成的胞间通讯机制与信号调控原理”、吉林省重点研发项目“臭氧催化氧化-生物降解近场耦合处理特种工业尾水技术研发与中试研究”等。
The team carries out R&D and application of technologies related to water pollution control and resource recovery. There are 5 professors, 3 associate professors, 6 lecturers and teacher post-docs in this team. It carried out over 70 national and provincial research projects. In the past five years, more than 100 SCI indexed papers have been published, and more than 10 patents were authorized. Main research fields include: (1) Novel mechanism of regulating biological wastewater treatment and resource utilization based on quorum sensing theory; (2) Novel method of promoting pollutant reduction and resource utilization based on functional strains; (3) Novel technology of improving biological treatment and resource utilization based on functional materials; (4) Low-carbon technology and process of polluted water treatment in severe cold regions.
代表性成果
--群体感应调控污水生物处理与资源化新机制
针对复杂水处理体系中生物代谢路径难调控导致的资源化效率低的问题,建立了信号分子定向调节微生物代谢路径与生物质合成的方法,阐释了信号分子强化微生物群体功能原理,研发了胞间通讯强化废水生物处理与资源化新技术。
--功能菌株强化污染物削减机制与资源化方法
针对废水生物处理体系中功能菌株丰度低导致的污染物处理效率低的问题,靶向筛选了难降解污染物高效降解菌,揭示了功能菌株的基因组学特征与代谢调控路径,构建了基因/菌群重组型废水处理与资源化的专性强化方法与技术。
--功能材料强化污水生物处理与资源化新技术
针对单一生物处理体系中废水毒性胁迫导致生物降解速率与资能源产率下降的问题,靶向研发了基于生境优化和胞间通讯原理的生态环境功能材料,揭示了其强化机制与调控原理,构建了功能材料协同微生物的废水处理与资源转化技术。
--严寒地区水污染低碳治理技术与工艺
针对目前东北区域面临的农业农村生活污水处理低效、流域水环境修复困难以及固体废弃物资源化利用成本高等问题,探究寒区农村生活污水低碳处理关键技术、寒区水环境生态修复强化技术以及寒区固废生物质资源的低碳转化与利用技术。
代表性论文
[1] 周丹丹;董双石;崔晓春; 高级氧化与生物降解近场耦合水处理技术,科学出版社,47千字,2022.
[2] 周丹丹; 付亮; 张崇军; 废水处理与资源化过程中的胞间通讯行为与机制, 吉林省科学技术出版社, 240千字, 2021.
[3] Zhou, D.; Luo, Y. H.; Zheng, C. W.; Long, M.; Long, X.; Bi, Y.; Zheng, X.; Zhou, C.; Rittmann, B. E. H(2)-Based Membrane Catalyst-Film Reactor (H(2)-MCfR) Loaded with Palladium for Removing Oxidized Contaminants in Water. Environ Sci Technol 2021, 55 (10), 7082.
[4] Huang, N.; Mao, J.; Zhao, Y.; Hu, M.; Wang, X. Multiple Transcriptional Mechanisms Collectively Mediate Copper Resistance in Cupriavidus gilardii CR3. Environ Sci Technol 2019, 53 (8), 4609.
[5] Zhou, D.; Zhang, C.; Fu, L.; Xu, L.; Cui, X.; Li, Q.; Crittenden, J. C. Responses of the Microalga Chlorophyta sp. to Bacterial Quorum Sensing Molecules (N-Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation. Environ Sci Technol 2017, 51 (6), 3490.
[6] Zhou, D.; Xu, Z.; Dong, S.; Huo, M.; Dong, S.; Tian, X.; Cui, B.; Xiong, H.; Li, T.; Ma, D. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light. Environ Sci Technol 2015, 49 (13), 7776.
[7] Ming, H.; Yan, G.; Zhang, X.; Pei, X.; Fu, L.; Zhou, D. Harsh temperature induces Microcystis aeruginosa growth enhancement and water deterioration during vernalization. Water Res 2022, 223, 118956.
[8] Feng, Z.; Lu, X.; Chen, C.; Huo, Y.; Zhou, D. Transboundary intercellular communications between Penicillium and bacterial communities during sludge bulking: Inspirations on quenching fungal dominance. Water Res 2022, 221, 118829.
[9] Zhang, Q.; Liu, Y.; Zhang, C.; Zhou, D. Easily biodegradable substrates are crucial for enhancing antibiotic risk reduction: Low-carbon discharging policies need to be more specified. Water Res 2022, 210, 117972.
[10]Xiong, H.; Dong, S.; Zhang, J.; Zhou, D.; Rittmann, B. E. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Res 2018, 136, 75.